Structures of Diversity

Blerina Sinaimeri

Computer Science Department
Sapienza University of Rome

ICTCS 2010
Zero–Error Capacity

Shannon 1956*

Suppose we want to transmit messages across a channel (where some symbols may be distorted) to a receiver: What is the maximum rate of transmission such that the receiver may recover the original message without errors?

<table>
<thead>
<tr>
<th>Channel Alphabet</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1, 2, 3, 4, 5</td>
</tr>
</tbody>
</table>

Distinguishable symbols

Transmission Rate: The maximum number of bits that can be transmitted without errors per channel use.

Suppose we want to transmit messages across a channel (where some symbols may be distorted) to a receiver: What is the maximum rate of transmission such that the receiver may recover the original message without errors?

Suppose we want to transmit messages across a channel (where some symbols may be distorted) to a receiver: What is the maximum rate of transmission such that the receiver may recover the original message without errors?

Channel

Alphabet \(V = \{1, 2, 3, 4, 5\} \)

Zero–Error Capacity

Shannon 1956*

Suppose we want to transmit messages across a **channel** (where some symbols may be distorted) to a receiver: What is the maximum **rate of transmission** such that the receiver may recover the original message without errors?

- **Channel**

 Alphabet \(V = \{1, 2, 3, 4, 5\} \)

 - **Transmission Rate**: The maximum number of bits that can be transmitted without errors per channel use.

Suppose we want to transmit messages across a channel (where some symbols may be distorted) to a receiver: What is the maximum rate of transmission such that the receiver may recover the original message without errors?

- **Channel**

 Alphabet \(V = \{1, 2, 3, 4, 5\} \)

- **Transmission Rate**: The maximum number of bits that can be transmitted without errors per channel use.

 Single symbols: \(\log_2 \)

Suppose we want to transmit messages across a channel (where some symbols may be distorted) to a receiver: What is the maximum rate of transmission such that the receiver may recover the original message without errors?

Channel

Alphabet $V = \{1, 2, 3, 4, 5\}$

Transmission Rate: The maximum number of bits that can be transmitted without errors per channel use.

Single symbols: $\log_2(5)$

Zero-error capacity

... and if we use larger strings in place of single symbols ...
Zero-error capacity

... and if we use larger strings in place of single symbols ...

\[x_1 x_2 \in y_1 y_2 \]
Zero-error capacity

... and if we use larger strings in place of single symbols ...

\[x_1 x_2 \in y_1 y_2 \]
Zero-error capacity

... and if we use larger strings in place of single symbols ...

\(x_1 x_2 \oplus y_1 y_2 \)
Zero-error capacity

... and if we use larger strings in place of single symbols ...

Graph G^2:
Zero-error capacity

... and if we use larger strings in place of single symbols ...

Graph G^2:

$V(G^2) = V \times V = \{11, 12, \ldots, 55\}$
Zero-error capacity

... and if we use larger strings in place of single symbols ...

Graph G^2:

- $V(G^2) = V \times V = \{11, 12, \ldots, 55\}$
- $\{v, w\} \in E(G^2) \Rightarrow \exists i : \{v_i, w_i\} \in E(G)$
Zero-error capacity

... and if we use larger strings in place of single symbols ...

Graph G^2:
- $V(G^2) = V \times V = \{11, 12, \ldots, 55\}$
- $\{v, w\} \in E(G^2) \Rightarrow \exists i : \{v_i, w_i\} \in E(G)$
Zero-error capacity

... and if we use larger strings in place of single symbols ...

Graph G^2:

- $V(G^2) = V \times V = \{11, 12, \ldots, 55\}$
- $\{v, w\} \in E(G^2) \Rightarrow \exists i : \{v_i, w_i\} \in E(G)$

$\omega(G^2) = ?$
Zero-error capacity

... and if we use larger strings in place of single symbols ...

Graph G^2:
- $V(G^2) = V \times V = \{11, 12, \ldots, 55\}$
- $\{v, w\} \in E(G^2) \Rightarrow \exists i : \{v_i, w_i\} \in E(G)$

$C = \{11, 23, 35, 42, 54\}$
Zero-error capacity

... and if we use larger strings in place of single symbols ...

Graph G^2:

- $V(G^2) = V \times V = \{11, 12, \ldots, 55\}$
- $\{v, w\} \in E(G^2) \Rightarrow \exists i : \{v_i, w_i\} \in E(G)$

$\omega(G^2) = ?$

$C = \{11, 23, 35, 42, 54\}$

Transmission Rate: $\frac{1}{2} \log 5 > \log 2$
Zero-error capacity

... and if we use larger strings in place of single symbols ...

Graph G^2:
- $V(G^2) = V \times V = \{11, 12, \ldots, 55\}$
- $\{v, w\} \in E(G^2) \Rightarrow \exists i : \{v_i, w_i\} \in E(G)$

\[\omega(G^2) = ? \]

$C = \{11, 23, 35, 42, 54\}$

Transmission Rate: $\frac{1}{2} \log 5 > \log 2$

If C is a clique in G^n then

\[x, y \in C \Rightarrow \exists i \in [n], \{x_i, y_i\} \in E(G). \]
Definition

The Shannon **zero-error capacity** of G is

$$C(G) = \lim_{n \to +\infty} \frac{1}{n} \log \omega(G^n)$$
The Shannon zero-error capacity of G is

$$C(G) = \lim_{n \to +\infty} \frac{1}{n} \log \omega(G^n)$$

$C(C_5) = ?$
Definition

The Shannon zero-error capacity of G is

$$C(G) = \lim_{n \to +\infty} \frac{1}{n} \log \omega(G^n)$$

$C(C_5) = \frac{1}{2} \log 5$

Lovász ’79: $C(C_5) = \frac{1}{2} \log 5$

The Shannon zero-error capacity of G is

$$C(G) = \lim_{n \to +\infty} \frac{1}{n} \log \omega(G^n)$$

$\mathbf{C}(C_5) = {?}$

Lovász ’79: $C(C_5) = \frac{1}{2} \log 5$

Determining the value of $C(C_7)$ is still open!

Generalizations

- Graphs [Sha56]
- Directed Graphs [KS92, GKV92]
- Graph Families [CKS90, GKV94]
- Uniform Hypergraphs [KM90]
Generalizations

- Graphs [Sha56]
- Directed Graphs [KS92, GKV92]
- Graph Families [CKS90, GKV94]
- Uniform Hypergraphs [KM90]

Connections

Extremal Combinatorics

- Perfect Graphs [Ber62]
- Qualitative Independence [Rén71, GKV93]

Information Theory

- Perfect hashing [FK84]
- Zero error list decoding [Eli57]
- Zero error capacity of compound channels [BBT59, Dob59, Wol60, NR05]
Generalization to *Infinite Graphs*?
Generalization to *Infinite Graphs*?
Generalization to *Infinite Graphs*?

↓

Permutations
G–different Permutations.

A precise Result
Shannon Zero–Error Capacity
Difference and Similarity

\[\pi = \pi(1)\pi(2) \ldots \pi(n) \]
Definition

G an infinite graph with $V(G) = \mathbb{N}$. Two permutations π, ρ of $[n]$ are said G–different if $\exists i \in [n]$ such that $\{\pi(i), \rho(i)\} \in E(G)$.

Example

G: $n = 5$
$\pi = 12345$
$\rho = 13245$
G–different.

$\pi = 12345$
$\rho = 34125$
Not G–different.
Definition

G an infinite graph with $V(G) = \mathbb{N}$. Two permutations π, ρ of $[n]$ are said G–different if $\exists i \in [n]$ such that $\{\pi(i), \rho(i)\} \in E(G)$.

Example
Definition

G an infinite graph with $V(G) = \mathbb{N}$. Two permutations π, ρ of $[n]$ are said G–different if $\exists i \in [n]$ such that $\{\pi(i), \rho(i)\} \in E(G)$.

Example

$$G : \begin{array}{c}
1 & 2 & 3 & 4 \\
\bullet & \bullet & \bullet & \bullet
\end{array}$$
Definition

G an infinite graph with $V(G) = \mathbb{N}$. Two permutations π, ρ of $[n]$ are said G–different if $\exists i \in [n]$ such that $\{\pi(i), \rho(i)\} \in E(G)$.

Example

$G : \begin{array}{cccc}
1 & 2 & 3 & 4 \\
\cdot & \cdot & \cdot & \cdot \\
\end{array}$

$n = 5$
Definition

G an infinite graph with $V(G) = \mathbb{N}$. Two permutations π, ρ of $[n]$ are said G–different if $\exists i \in [n]$ such that $\{\pi(i), \rho(i)\} \in E(G)$.

Example

\[
G : \quad \begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array}
\]

$n = 5$

$\pi = 12345$

$\rho = 13245$
Definition

G an infinite graph with $V(G) = \mathbb{N}$. Two permutations π, ρ of $[n]$ are said G–different if $\exists i \in [n]$ such that $\{\pi(i), \rho(i)\} \in E(G)$.

Example

$G : \begin{array}{c}
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\bullet & \bullet & \bullet \quad & \quad \quad \bullet
\end{array}
\end{array}$

$n = 5$

- $\pi = 12345$
- $\rho = 13245$

G–different.
Definition

G an infinite graph with $V(G) = \mathbb{N}$. Two permutations π, ρ of $[n]$ are said G–different if $\exists i \in [n]$ such that $\{\pi(i), \rho(i)\} \in E(G)$.

Example

$G : \begin{array}{cccc}
1 & 2 & 3 & 4 \\
\bullet & \bullet & \bullet & \bullet
\end{array}$

$n = 5$

$\pi = 12345$

$\rho = 13245$

$\pi = 12345$

$\rho = 34125$

G–different.
Definition

G an infinite graph with $V(G) = \mathbb{N}$. Two permutations π, ρ of $[n]$ are said G–different if $\exists i \in [n]$ such that $\{\pi(i), \rho(i)\} \in E(G)$.

Example

G:

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots \\
\end{array}
\]

$n = 5$

\begin{itemize}
 \item $\pi = 12345$
 \item $\rho = 13245$
\end{itemize}

G–different.

\begin{itemize}
 \item $\pi = 12345$
 \item $\rho = 34125$
\end{itemize}

Not G–different.
Problem

\(T(G, n) \) the maximum cardinality of a set of pairwise \(G \)-different permutations of \([n]\).
Problem

$T(G, n)$ the maximum cardinality of a set of pairwise G–different permutations of $[n]$.

$T(G, n) = ?$
Problem

\(T(G, n) \) the maximum cardinality of a set of pairwise \(G \)-different permutations of \([n]\).

\[T(G, n) = ? \]

The semi–infinite path \(L \)

Conjecture

[KM06]

\[T(L, n) = \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor} \]
Problem

\(T(G, n) \) the maximum cardinality of a set of pairwise \(G \)-different permutations of \([n]\).

\[
T(G, n) = ?
\]

The semi-infinite path \(L \)

Conjecture

\[[KM06] \]

\[
T(L, n) = \binom{n}{\lfloor \frac{n}{2} \rfloor}
\]

- Best upper and lower bounds in \[BCF^+\]
Problem

\(T(G, n) \) the maximum cardinality of a set of pairwise
\(G \)-different permutations of \([n]\).

\[T(G, n) = ? \]

The semi–infinite path \(L \)

Conjecture

[KM06]

\[T(L, n) = \binom{n}{\lfloor n/2 \rfloor} \]

- Best upper and lower bounds in [BCF+]

Surprisingly for the complement graph of \(L \) an exact formula is found ...
Let \overline{L} be the complement graph of semi-infinite path, then

$$T(n, \overline{L}) = \frac{n!}{2\left\lfloor \frac{n}{2} \right\rfloor}$$

Theorem
Theorem

Let \bar{L} be the complement graph of semi-infinite path, then

$$T(n, \bar{L}) = \frac{n!}{2^{\lceil \frac{n}{2} \rceil}}$$

Proof (\leq)
Theorem

Let \(\overline{L} \) be the complement graph of semi-infinite path, then

\[
T(n, \overline{L}) = \frac{n!}{2^\left\lfloor \frac{n}{2} \right\rfloor}
\]

Proof (\(\leq \))
For any \(\pi \) a permutation of \([n]\) define a set \(C(\pi) \):
Theorem

Let \bar{L} be the complement graph of semi-infinite path, then

$$T(n, \bar{L}) = \frac{n!}{2^{\left\lfloor \frac{n}{2} \right\rfloor}}$$

Proof (\leq)

For any π a permutation of $[n]$ define a set $C(\pi)$:

$$\pi : 231456$$
Theorem

Let \(\overline{L} \) be the complement graph of semi-infinite path, then

\[
T(n, \overline{L}) = \frac{n!}{2\lceil \frac{n}{2} \rceil}
\]

Proof \((\leq)\)

For any \(\pi \) a permutation of \([n]\) define a set \(C(\pi) \):

\[\pi : 231456\]
Theorem

Let \bar{L} be the complement graph of semi-infinite path, then

$$T(n, \bar{L}) = \frac{n!}{2^\left\lfloor \frac{n}{2} \right\rfloor}$$

Proof (\leq)

For any π a permutation of $[n]$ define a set $C(\pi)$:

\[
\pi : 231456 \\
1 \leftrightarrow 2 : 132456
\]
Let \overline{L} be the complement graph of semi-infinite path, then

$$T(n, \overline{L}) = \frac{n!}{2^\left\lfloor \frac{n}{2} \right\rfloor}$$

Proof (\leq)

For any π a permutation of $[n]$ define a set $C(\pi)$:

$$\pi : \ {231456}$$

$$1 \leftrightarrow 2 : \ {132456}$$

$$3 \leftrightarrow 4 : \ {241356}$$
Theorem

Let \overline{L} be the complement graph of semi-infinite path, then

$$T(n, \overline{L}) = \frac{n!}{2^\lfloor \frac{n}{2} \rfloor}$$

Proof (\leq)

For any π a permutation of $[n]$ define a set $C(\pi)$:

- $\pi : 231456$
- $1 \leftrightarrow 2 : 132456$
- $3 \leftrightarrow 4 : 241356$
- $1 \leftrightarrow 2, 5 \leftrightarrow 6 : 132465$
Theorem

Let \(\bar{L} \) be the complement graph of semi-infinite path, then

\[
T(n, \bar{L}) = \frac{n!}{2^\left\lfloor \frac{n}{2} \right\rfloor}
\]

Proof \((\leq)\)

For any \(\pi \) a permutation of \([n]\) define a set \(C(\pi) \):

- \(\pi : 231456 \)
- \(1 \leftrightarrow 2 : 132456 \)
- \(3 \leftrightarrow 4 : 241356 \)
- \(1 \leftrightarrow 2, 5 \leftrightarrow 6 : 132465 \)

- \(|C(\pi)| = 2^\left\lfloor \frac{n}{2} \right\rfloor \)
- If \(\pi, \rho \) are \(\bar{L} \)-different then \(C(\pi) \cap C(\rho) = \emptyset \).
Proof (≥)

\[T(n - 1, D) \geq T(n - 2, L) \]
Proof (≥)

IDEA:
Proof (\geq)

IDEA:

\[
\begin{align*}
T(n - 2, D) \geq T(n - 1, D)
\end{align*}
\]
Proof (\geq)

IDEA:

$$T(n-2, D)$$

Insert $n - 1$ and n
Proof \((\geq)\)

IDEA:

\[
T(n - 2, D) \geq \binom{n}{2} T(n - 2, \bar{L})
\]
Asymptotic Growth $T(n,D)$
Asymptotic Growth \(T(n,D) \)

- Exponential \(\sim \exp(n) \):
Asymptotic Growth $T(n, D)$

- Exponential $\sim \exp(n)$:
 \[
 1.8155^n \leq T(n, L) \leq \left(\frac{n}{\lfloor n/2 \rfloor}\right)
 \]
Asymptotic Growth $T(n,D)$

- Exponential $\sim \exp(n)$: $1.8155^n \leq T(n, L) \leq \left(\frac{n}{\lfloor n/2 \rfloor} \right)$

- Super-Exponential $\sim \frac{n!}{\exp(n)}$:
Asymptotic Growth \(T(n,D) \)

- **Exponential** \(\sim \exp(n) \): \(1.8155^n \leq T(n,L) \leq \binom{n}{\lfloor n/2 \rfloor} \)

- **Super-Exponential** \(\sim \frac{n!}{\exp(n)} \): \(T(n,\bar{L}) = \frac{n!}{2^{\lfloor n/2 \rfloor}} \)
Asymptotic Growth $T(n,D)$

- Exponential $\sim \exp(n)$: $1.8155^n \leq T(n, L) \leq {n \choose \lfloor n/2 \rfloor}$

- Super-Exponential $\sim \frac{n!}{\exp(n)}$: $T(n, \overline{L}) = \frac{n!}{2^{\lfloor n/2 \rfloor}}$

- Other?
Asymptotic Growth \(T(n, D) \)

- **Exponential** \(\sim \exp(n) \):
 \[
 1.8155^n \leq T(n, L) \leq \left(\frac{n}{\lfloor \frac{n}{2} \rfloor} \right)
 \]

- **Super-Exponential** \(\sim \frac{n!}{\exp(n)} \):
 \[
 T(n, \overline{L}) = \frac{n!}{2^{\lfloor \frac{n}{2} \rfloor}}
 \]

- **Other?**
 \[
 (\sqrt{n})!^{\sqrt{n}} \leq T(n, F) \leq \frac{n!}{(\sqrt{n})!^{\sqrt{n}}}
 \]
Asymptotic Growth $T(n, D)$

- Exponential $\sim \exp(n)$:
 \[1.8155^n \leq T(n, L) \leq \left(\frac{n}{\lfloor n/2 \rfloor}\right)\]

- Super-Exponential $\sim \frac{n!}{\exp(n)}$:
 \[T(n, \bar{L}) = \frac{n!}{2^{\lfloor n/2 \rfloor}}\]

- Other?
 \[\sqrt{n}! \sqrt[n]{n} \leq T(n, F) \leq \frac{n!}{(\sqrt{n})! \sqrt[n]{n}}\]

Study the relations between $T(n, G)$ *and* $T(n, \bar{G})$
Asymptotic Growth $T(n,D)$

- Exponential $\sim \exp(n)$: $1.8155^n \leq T(n,L) \leq \left(\frac{n}{\lfloor \frac{n}{2} \rfloor} \right)$

- Super-Exponential $\sim \frac{n!}{\exp(n)}$: $T(n,\overline{L}) = \frac{n!}{2\left\lfloor \frac{n}{2} \right\rfloor}$

- Other?

 $$(\sqrt{n})!^{\sqrt{n}} \leq T(n,F) \leq \frac{n!}{(\sqrt{n})!^{\sqrt{n}}}$$

Study the relations between $T(n,G)$ **and** $T(n,\overline{G})$

Study the asymptotic of

$$\frac{T(n,F)T(n,G)}{T(n,F \cup G)}$$
The Shannon zero–error capacity is a special case of the problem of determining the asymptotic growth of $T(n, G)$.
Example

Consider G with $V(G) = \mathbb{N}$ and $\{a, b\} \in E(G)$ if $|a - b| \equiv 1 \circ 4 \pmod{5}$.
Example

Consider G with $V(G) = \mathbb{N}$ and $\{a, b\} \in E(G)$ if $|a - b| \equiv 1 \circ 4 \pmod{5}$.

![Graph with nodes 0, 1, 2, 3, 4 connected in a cycle]
Consider G with $V(G) = \mathbb{N}$ and $\{a, b\} \in E(G)$ if $|a - b| \equiv 1 \circ 4 \pmod{5}$.

\[
\lim_{n \to +\infty} \frac{1}{n} \log T(n, G) = C(C_5)
\]
Difference and Similarity

G–difference
Difference and Similarity

G–difference

- Irreflexive relation
Difference and Similarity

G–difference

- Irreflexive relation
- Locally verifiable
Difference and Similarity

G–difference

- Irreflexive relation
- Locally verifiable

The “opposite” of a difference relation
Difference and Similarity

G–difference
- Irreflexive relation
- Locally verifiable

The “opposite” of a difference relation

Similarity relation
Difference and Similarity

G–difference
- Irreflexive relation
- Locally verifiable

The "opposite" of a difference relation

Similarity relation
- Reflexive relation
Difference and Similarity

G–difference
- Irreflexive relation
- Locally verifiable

The “opposite” of a difference relation

Similarity relation
- Reflexive relation
- Locally verifiable
Difference and Similarity

G–difference
- Irreflexive relation
- Locally verifiable

The "opposite" of a difference relation

Similarity relation
- Reflexive relation
- Locally verifiable

Intersection Problems
Difference and Similarity

G–difference

- Irreflexive relation
- Locally verifiable

The “opposite” of a difference relation

Similarity relation

- Reflexive relation
- Locally verifiable

Intersection Problems

- Erdős–Ko–Rado [EKR61]
Difference and Similarity

G–difference
- Irreflexive relation
- Locally verifiable

The “opposite” of a difference relation

Similarity relation
- Reflexive relation
- Locally verifiable

Intersection Problems
- Erdős–Ko–Rado [EKR61]
- Intersection theorems for permutations [EFP]
Difference and Similarity

G–difference
- Irreflexive relation
- Locally verifiable

The “opposite” of a difference relation

Similarity relation
- Reflexive relation
- Locally verifiable

Intersection Problems

- Erdős–Ko–Rado [EKR61]
- Intersection theorems for permutations [EFP]
Difference and Similarity

G–difference
- Irreflexive relation
- Locally verifiable

The “opposite” of a difference relation

Similarity relation
- Reflexive relation
- Locally verifiable

Intersection Problems
- Erdős–Ko–Rado [EKR61]
- Intersection theorems for permutations [EFP]

Similarity relation

The G–difference property is never satisfied!!
Difference and Similarity

G–difference
- Irreflexive relation
- Locally verifiable

The “opposite” of a difference relation

Similarity relation
- Reflexive relation
- Locally verifiable

Intersection Problems
- Erdős–Ko–Rado [EKR61]
- Intersection theorems for permutations [EFP]

Similarity relation

The G–difference property is never satisfied!!

- Reflexive relation
Difference and Similarity

G–difference
- Irreflexive relation
- Locally verifiable

The "opposite" of a difference relation

Similarity relation
- Reflexive relation
- Locally verifiable

Intersection Problems

Similarity relation

The G–difference property is never satisfied!!

- Reflexive relation
- Not locally verifiable

Intersection theorems for permutations [EFP]

Erdős–Ko–Rado [EKR61]
Forbiddance Problems

Definition

For G, denote by $\tilde{G}(G)$ the family of all the orientations of G.
For G, denote by $\vec{G}(G)$ the family of all the orientations of G.

A **capacity** type problem

Find the maximum cardinality of $C \subseteq [V(G)]^n$ such that $x, y \in C$ and for any $G' \in \vec{G}(G)$ $\exists i, j$ for which (x_i, y_i) and (y_j, x_j) are in $E(G')$.
Definition

For G, denote by $\tilde{G}(G)$ the family of all the orientations of G.

A capacity type problem

Find the maximum cardinality of $C \subseteq [V(G)]^n$ such that $x, y \in C$ and for any $G' \in \tilde{G}(G) \exists i, j$ for which (x_i, y_i) and (y_j, x_j) are in $E(G')$.
Definition

For G, denote by $\vec{G}(G)$ the family of all the orientations of G.

A capacity type problem

Find the maximum cardinality of $C \subseteq [V(G)]^n$ such that $x, y \in C$ and for any $G' \in \vec{G}(G)$ $\exists i, j$ for which (x_i, y_i) and (y_j, x_j) are in $E(G')$.
- $G = K_N$
- permutations
\begin{itemize}
 \item $G = K_N$
 \item permutations
\end{itemize}

Capacity

Reverse–different
\[G = K_N \]

permutations

Capacity

Reverse–different

\[
\begin{array}{cccccc}
1 & 2 & 5 & 4 & 3 & 6 \\
1 & 3 & 4 & 6 & 2 & 5 \\
\end{array}
\]
\[G = K_N \]

\[\text{permutations} \]

Capacity

Reverse–different

\[
\begin{array}{cccccc}
1 & 2 & 5 & 4 & 3 & 6 \\
1 & 3 & 4 & 6 & 2 & 5 \\
\end{array}
\]
Forbiddance of a graph family
Reverse–free triples

Background
G–different permutations
Forbiddance Problems
2–Cancellative Families
Conclusion

- $G = K_N$
- permutations

Capacity
Reverse–different

Forbiddance
Reverse–Free

$1 \ 2 \ 5 \ 4 \ 3 \ 6$

$1 \ 3 \ 4 \ 6 \ 2 \ 5$
Forbiddance of a graph family

Reverse–free triples

- $G = K_N$
- permutations

Capacity

Reverse–different

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Forbiddance

Reverse–Free

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reverse–different

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\(G = \mathcal{K}_N \)

Capacity

Reverse-different

\[
\begin{array}{cccccc}
1 & 2 & 5 & 4 & 3 & 6 \\
\hline
1 & 3 & 4 & 6 & 2 & 5
\end{array}
\]

Forbiddance

Reverse-Free

\[
\begin{array}{cccccc}
1 & 2 & 5 & 4 & 3 & 6 \\
\hline
1 & 5 & 4 & 3 & 6 & 2
\end{array}
\]

\[
2 \left\lfloor \frac{n}{2} \right\rfloor \leq T(n) \leq \frac{n!}{3 \left\lfloor \frac{n}{2} \right\rfloor}
\]
G = K_N

Forbiddance

Reverse–different

\[2 \lfloor \frac{n}{2} \rfloor \leq T(n) \leq \frac{n!}{3 \lfloor \frac{n}{2} \rfloor} \]

Reverse–Free

\[3 \lfloor \frac{n}{2} \rfloor \leq T'(n) \leq \frac{n!}{2 \lfloor \frac{n}{2} \rfloor} \]
Reverse–free permutations
Reverse–free permutations

Partial permutations, i.e. ordered sets of k-elements.
Reverse–Free k-uples

Let $T_k(n)$ be the maximum cardinality of a set of reverse-free k-uples of $[n]$.
Let $T_k(n)$ be the maximum cardinality of a set of reverse-free k-uples of $[n]$.

$$t(k) = \limsup_{n \to \infty} \frac{T_k(n)}{k! \binom{n}{k}} = ?$$
Reverse–Free k-uples

Let $T_k(n)$ be the maximum cardinality of a set of reverse-free k-uples of $[n]$.

$$t(k) = \limsup_{n \to \infty} \frac{T_k(n)}{k! \binom{n}{k}} = ?$$

If $k = 2$ then $T_2(n) = \binom{n}{2} \Rightarrow t(2) = \frac{1}{2}$
Reverse–Free k-uples

Let $T_k(n)$ be the maximum cardinality of a set of reverse-free k-uples of $[n]$.

$$t(k) = \limsup_{n \to \infty} \frac{T_k(n)}{k! \binom{n}{k}} = ?$$

If $k = 2$ then $T_2(n) = \binom{n}{2} \Rightarrow t(2) = \frac{1}{2}$

If $k = 3$??
Reverse–Free k-uples

Let $T_k(n)$ be the maximum cardinality of a set of reverse-free k-uples of $[n]$.

$$t(k) = \limsup_{n \to \infty} \frac{T_k(n)}{k!(\binom{n}{k})} = ?$$

If $k = 2$ then $T_2(n) = \binom{n}{2} \Rightarrow t(2) = \frac{1}{2}$

If $k = 3$?? $t(3) = 5/24$
Case $k = 3$
Case $k = 3$

Theorem

$$T_3(n) = \frac{5}{24} n^3 - \frac{1}{2} n^2 + \frac{5}{8} n$$
Case $k = 3$

Theorem

$$T_3(n) = \frac{5}{24}n^3 - \frac{1}{2}n^2 + \frac{5}{8}n$$

Proof
Case $k = 3$

Theorem

$$T_3(n) = \frac{5}{24} n^3 - \frac{1}{2} n^2 + \frac{5}{8} n$$

Proof

(\geq) Recursive construction. Tight when $n = 3^q$.
Case \(k = 3 \)

Theorem

\[
T_3(n) = \frac{5}{24} n^3 - \frac{1}{2} n^2 + \frac{5}{8} n
\]

Proof

(\(\geq \)) Recursive construction. Tight when \(n = 3^q \).

(\(\leq \))
Case $k = 3$

Theorem

$$T_3(n) = \frac{5}{24}n^3 - \frac{1}{2}n^2 + \frac{5}{8}n$$

Proof

(≥) Recursive construction. Tight when $n = 3^q$.

(≤) For any $a, b, c \in [n]$
Case $k = 3$

Theorem

$$T_3(n) = \frac{5}{24} n^3 - \frac{1}{2} n^2 + \frac{5}{8} n$$

Proof

(\geq) Recursive construction. Tight when $n = 3^q$.

(\leq) For any $a, b, c \in [n]$

```
  a  b  c
  b  c  a
  c  a  b
```

```
  b  a  c
  a  c  b
  c  b  a
```
Case $k = 3$

Theorem

$$T_3(n) = \frac{5}{24} n^3 - \frac{1}{2} n^2 + \frac{5}{8} n$$

Proof

(\geq) Recursive construction. Tight when $n = 3^q$.

(\leq) For any $a, b, c \in [n]$

\[
\begin{align*}
\text{a} & \quad \text{b} & \quad \text{c} \\
\text{b} & \quad \text{c} & \quad \text{a} \\
\text{c} & \quad \text{a} & \quad \text{b} \\
\text{b} & \quad \text{a} & \quad \text{c} \\
\text{a} & \quad \text{c} & \quad \text{b} \\
\text{c} & \quad \text{b} & \quad \text{a}
\end{align*}
\]
Case $k = 3$

Theorem

$$T_3(n) = \frac{5}{24} n^3 - \frac{1}{2} n^2 + \frac{5}{8} n$$

Proof

(≥) Recursive construction. Tight when $n = 3^q$.

(≤) For any $a, b, c \in [n]$:

\[
\begin{align*}
& a & b & c \\
& b & c & a \\
& c & a & b \\
& b & a & c \\
& a & c & b \\
& c & b & a \\
\end{align*}
\]
IDEA

\[abc \in C \]
$abc \in C$
IDEA

$abc \in C$
\[abc \in C \]
IDEA

$abc \in C$
Forbiddance of a graph family
Reverse–free triples

IDEA

G – different permutations
Forbiddance Problems
2–Cancellative Families
Conclusion

D with E (D) = E (G1) ∩ E (G2) ∩ E (G3)

\[
\begin{align*}
G_1 & : a \rightarrow b, c, e, d \\
G_2 & : a \rightarrow b, c, e, d \\
G_3 & : a \rightarrow b, c, e, d
\end{align*}
\]
D with $E(D) = E(G_1) \cap E(G_2) \cap E(G_3)$
IDEA

\[
D \text{ with } E(D) = E(G_1) \cap E(G_2) \cap E(G_3)
\]
Cancellative Families

Capacity of a k-uniform hypergraph

G–difference: from binary relations to relations involving k-sets of strings
Capacity of a \(k \)-uniform hypergraph

\(G \)-difference: from binary relations to relations involving \(k \)-sets of strings

\(\downarrow \)
G–different permutations

Forbiddance Problems

2–Cancellative Families

Conclusion

Capacity of a uniform hypergraph

Requirements over three strings

Requirements over four strings

Capacity of a k-uniform hypergraph

G–difference: from binary relations to relations involving k-sets of strings

\[\downarrow \]

Capacity of a k-uniform hypergraph
Capacity of a k-uniform hypergraph

G–difference: from binary relations to relations involving k-sets of strings

\downarrow

Capacity of a k-uniform hypergraph
\(H \) is a complete \textbf{k–uniform} hypergraph
H is a complete k–uniform hypergraph

Problem [KS88]
Let $C \subseteq [V]^n$ such that for any k strings $\exists I_m, |V| \subseteq [n]$ where the projections of the strings are all different.
H is a complete k–uniform hypergraph

Problem [KS88]
Let $C \subseteq [V]^n$ such that for any k strings \(\exists I_m, |V| \subseteq [n] \) where the projections of the strings are all different.

First case to consider: $V = \{0, 1\}$ e $k = 4$
H is a complete k–uniform hypergraph

Problem [KS88]

Let $C \subseteq [V]^n$ such that for any k strings $\exists I_{m,|V|} \subseteq [n]$ where the projections of the strings are all different.

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

First case to consider: $V = \{0, 1\}$ and $k = 4$
Problem [KS88]

Let $C \subseteq [V]^n$ such that for any k strings $\exists I_{m,|V|} \subseteq [n]$ where the projections of the strings are all different.

First case to consider: $V = \{0, 1\} \; e \; k = 4$

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Variations:
H is a complete k–uniform hypergraph

Problem [KS88]

Let $C \subseteq [V]^n$ such that for any k strings $\exists I_m, |V| \subseteq [n]$ where the projections of the strings are all different.

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

First case to consider: $V = \{0, 1\}$ and $k = 4$

Variations:

- One column of weight two
H is a complete k–uniform hypergraph

Problem [KS88]

Let $C \subseteq [V]^n$ such that for any k strings $\exists I_m, |V| \subseteq [n]$ where the projections of the strings are all different.

First case to consider: $V = \{0, 1\}$ and $k = 4$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Variations:

- One column of weight two (two columns?)
A complete k–uniform hypergraph

Problem [KS88]

Let $C \subseteq [V]^n$ such that for any k strings $\exists I_m, |V| \subseteq [n]$ where the projections of the strings are all different.

\[
\begin{array}{cc}
i & j \\
0 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1 \\
\end{array}
\]

First case to consider : $V = \{0, 1\}$ e $k = 4$

Variations:

- One column of weight two (two columns?)
- One column of weight one
H is a complete k–uniform hypergraph

Problem [KS88]

Let $C \subseteq [V]^n$ such that for any k strings $\exists I_m, |V| \subseteq [n]$ where the projections of the strings are all different.

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

First case to consider : $V = \{0, 1\}$ and $k = 4$

Variations:

- One column of weight two (two columns?)
- One column of weight one (two?, three? …)
H is a complete k–uniform hypergraph

Problem [KS88]

Let $C \subseteq [V]^n$ such that for any k strings $\exists I_{m, |V|} \subseteq [n]$ where the projections of the strings are all different.

First case to consider: $V = \{0, 1\}$ e $k = 4$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Variations:

- One column of weight two (two columns?)
- One column of weight one (two?, three? ...)
- $k = 3$?
\(H \) is a complete \textbf{k-uniform} hypergraph

\textbf{Problem [KS88]}

Let \(C \subseteq [V]^n \) such that for any \(k \) strings \(\exists \{m, |V| \subseteq [n] \) where the projections of the strings are all different.

\[
\begin{array}{c|c|c}
0 & 0 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

First case to consider: \(V = \{0, 1\} \) e \(k = 4 \)

Variations:

- One column of weight two (two columns?)
- One column of weight one (two?, three? ...)
- \(k = 3 \) ?

\textbf{Open Problems!!}
Requirements over three strings

Problem

Determine the maximum cardinality of $C \subseteq [V]^n$ such that for any 3 of its elements there exists r coordinates in which the respective columns of the strings are all different and of weight 1.
Problem

Determine the maximum cardinality of $C \subseteq [V]^n$ such that for any 3 of its elements there exists r coordinates in which the respective columns of the strings are all different and of weight 1.

- $r = 1$: Δ–systems [ES78, Kos00]
Requirements over three strings

Problem

Determine the maximum cardinality of $C \subseteq [V]^n$ such that for any 3 of its elements there exists r coordinates in which the respective columns of the strings are all different and of weight 1.

- $r = 1$: Δ-systems [ES78, Kos00]
- $r = 2$: Cancellative Families [Tol00, Kat75]
Requirements over three strings

Problem

Determine the maximum cardinality of \(C \subseteq [V]^n \) such that for any 3 of its elements there exists \(r \) coordinates in which the respective columns of the strings are all different and of weight 1.

- \(r = 1 \): \(\Delta \)-systems [ES78, Kos00]
- \(r = 2 \): Cancellative Families [Tol00, Kat75]
 Tolhuizen’s solution concerning codes for a multiplying channel (2000).
Requirements over three strings

Problem
Determine the maximum cardinality of $C \subseteq [V]^n$ such that for any 3 of its elements there exists r coordinates in which the respective columns of the strings are all different and of weight 1.

- $r = 1$: Δ–systems [ES78, Kos00]
- $r = 2$: Cancellative Families [Tol00, Kat75]
 Tolhuizen’s solution concerning codes for a multiplying channel (2000).
- $r = 3$: Selective sets [EFF85]
Requirements over three strings

Problem

Determine the maximum cardinality of \(C \subseteq [V]^n \) such that for any 3 of its elements there exists \(r \) coordinates in which the respective columns of the strings are all different and of weight 1.

- \(r = 1 \) : \(\Delta \)-systems [ES78, Kos00]
- \(r = 2 \) : Cancellative Families [Tol00, Kat75]
 Tolhuizen’s solution concerning codes for a multiplying channel (2000).
- \(r = 3 \) : Selective sets [EFF85]
 - Conflict resolution in multiaccess channel
Requirements over three strings

Problem

Determine the maximum cardinality of $C \subseteq [V]^n$ such that for any 3 of its elements there exists r coordinates in which the respective columns of the strings are all different and of weight 1.

- $r = 1$: Δ–systems [ES78, Kos00]
- $r = 2$: Cancellative Families [Tol00, Kat75]
 - Tolhuizen’s solution concerning codes for a multiplying channel (2000).
- $r = 3$: Selective sets [EFF85]
 - Conflict resolution in multiaccess channel
 - Superimposed codes
Requirements over three strings

Problem

Determine the maximum cardinality of $C \subseteq [V]^n$ such that for any 3 of its elements there exists r coordinates in which the respective columns of the strings are all different and of weight 1.

- $r = 1$: Δ–systems [ES78, Kos00]
- $r = 2$: Cancellative Families [Tol00, Kat75]
 - Tolhuizen’s solution concerning codes for a multiplying channel (2000).
- $r = 3$: Selective sets [EFF85]
 - Conflict resolution in multiaccess channel
 - Superimposed codes
 - Group Testing ...
Requirements over three strings

Problem

Determine the maximum cardinality of $C \subseteq [V]^n$ such that for any 3 of its elements there exists r coordinates in which the respective columns of the strings are all different and of weight 1.

- $r = 1$: Δ–systems [ES78, Kos00]
- $r = 2$: Cancellative Families [Tol00, Kat75]
 Tolhuizen’s solution concerning codes for a multiplying channel (2000).
- $r = 3$: Selective sets [EFF85]
 - Conflict resolution in multiaccess channel
 - Superimposed codes
 - Group Testing ...
Requirements over four strings

Problem

Find the maximum cardinality of $C \subseteq [V]^n$ such that for any 4 of its strings there are r coordinates in which the respective columns of the strings are all different and of weight 1.
Requirements over four strings

Problem

Find the maximum cardinality of $C \subseteq [V]^n$ such that for any 4 of its strings there are r coordinates in which the respective columns of the strings are all different and of weight 1.

- $r = 1$: 4–locally thin sets [FKM01]
Requirements over four strings

Problem

Find the maximum cardinality of $C \subseteq [V]^n$ such that for any 4 of its strings there are r coordinates in which the respective columns of the strings are all different and of weight 1.

- $r = 1$: 4–locally thin sets [FKM01]
- $r = 2$: 2–cancellative families [KS07]
Requirements over four strings

Problem

Find the maximum cardinality of \(C \subseteq [V]^n \) such that for any 4 of its strings there are \(r \) coordinates in which the respective columns of the strings are all different and of weight 1.

- \(r = 1 \) : 4–locally thin sets [FKM01]
- \(r = 2 \) : 2–cancellative families [KS07]
- \(r = 4 \) : Selective families
2–Cancellative Families

Theorem

\[0.11 \leq \limsup_{n \to +\infty} \frac{1}{n} \log M(n) \leq 0.42 \]
2–Cancellative Families

Theorem

\[
0.11 \leq \limsup_{n \to +\infty} \frac{1}{n} \log M(n) \leq 0.42
\]

Proof

Upper Bound: Use Tolhuizen’s result.
2–Cancellative Families

Theorem

\[
0.11 \leq \limsup_{n \to +\infty} \frac{1}{n} \log M(n) \leq 0.42
\]

Proof

Upper Bound: Use Tolhuizen’s result.

Lower Bound: Use random choice.
2–Cancellative Families

Theorem

\[
0.11 \leq \limsup_{n \to +\infty} \frac{1}{n} \log M(n) \leq 0.42
\]

Proof

Upper Bound: Use Tolhuizen’s result.

Lower Bound: Use random choice.
Conclusion

- G–differenti Permutation
- Forbiddance Problems
- Cancellativity
Conclusion

- G–differenti Permutation
- Forbiddance Problems
- Cancellativity

Extremal Combinatorics \Leftrightarrow Information Theory
Bibliografia I

The capacity of a class of channels.

Permutation capacities of families of oriented infinite paths.
(submitted).

Sur une conjecture relative au problème des codes optimaux.
Communications 13ème Assemblée Générale de l’URSI, Tokyo, 1962.

Zero-error capacities and very different sequences.
"Sequences: Combinatorics, compression, security and transmission" (R. M. Capocelli, Ed.),

Optimal information transfer over a channel with unknown parameters.

Families of finite sets in which no set is covered by the union of r others.
Bibliografia II

Intersection theorems for permutations.
(to appear).

Intersection theorems for systems of finite sets.

List decoding for noisy channels.
Technical Report 335, Research Laboratory of Electronics, MIT, 1957.

Combinatorial properties of systems of sets.

On the size of separating systems and perfect hash functions.

[FKM01] E. Fachini, J. Körner, and A. Monti.
A better bound for locally thin set families.

[FKMS] Z. Füredi, I. Kantor, A. Monti, and B. Sinaimeri.
On sets of pairwise reverse free ordered triples.
(submitted).
Bibliografia III

Sperner theorems on directed graphs and qualitative independence.

Sperner capacities.

Sperner capacities: from information theory to extremal set theory.

Extremal problems for hypergraphs.

On the capacity of uniform hypergraphs.

Pairwise colliding permutations and the capacity of infinite graphs.

[Kos00] A. V. Kostochka.
Extremal problems on delta-systems.
Bibliografia IV

Separating partition systems and locally different sequences.

A Sperner-type theorem and qualitative independence.

On cancellative set families.

On types of growth for graph-different permutations.

On the Shannon capacity of a graph.

Graph capacities and zero-error transmission over compound channels.

[Rén71] A. Rényi.
Foundations of Probability.
Bibliografia V

The zero-error capacity of a noisy channel.

New rate pairs in the zero-error capacity region of the binary multiplying channel without feedback.

Simultaneous channels.
Background
G–different permutations
Forbiddance Problems
2–Cancellative Families

Conclusion